
1 Software Architectural Tool Validation for Object-Oriented Testing using with the facilitate Quality Attributes- a Case
Study of Snaker Game Project

Software Architectural Tool Validation for Ob-
ject-Oriented Testing using with the facilitate Quality

Attributes- a Case Study of Snaker Game Project

Lalji Prasad, Sarita Singh Bhadauria

1 Truba College of Engineering and Technology, Department of Computer science and Engineering, Indore, TCET(RGTU),BHOPAL INDIA, Email:
lalji.research@gmail.com ;2 Department of Electronics ,MITS (RGTU), Madhav Institute of Technology and Science ,Gwalior, INDIA.
Email: saritamits61@yahoo.co.in

Received Month Day, Year (2012).

ABSTRACT
In this research work investigate quality of software architecture testing tool (our architecture testing) model [34] with
the help of snaker game project , first draw a architecture of testing method snaker game project based on their attrib-
ute nature and shows their relationship, then identify object oriented characteristic (property) for snaker game pro-
ject at class level architecture, next phase will be quantify testing (based on different software metrics) on each com-
ponents (class) and after testing we apply different statistical data analysis for validation of our research work and
quantify relationship through different software metrics and conclude quality with the help of statistical tool.

Keywords: Architectural Completeness; Architectural Quality Attribute; Architectural Metrics.

1. Introduction
Here we have taken snaker game project for determining
quality of software and validation of the software archi-
tecture tool , in this game player controls a long, thin
creature, resembling a snaker, which roams around on a
bordered plane, picking up food (or some other item).
Each time the snake eats a piece of food, its tail grows
longer, making the game increasingly difficult. The user
controls the direction of the snake's head (up, down, left,
or right), and the snake's body follows. The player can-
not stop the snake from moving while the game is in
progress, and cannot make the snake go in reverse. Dif-
ferent researcher work on quality of software architecture
and testing for ensuring the quality of software, here
discuss only prominence few literature. Bass et al. Artic-
ulated importance of software architecture [12] .Soni and
et al.“ say , Software architectures describe how a system
is decomposed into components, how these components
are interconnected, and how they communicate and in-
teract with each other’s” [14]. Perry and Wolf work on
Software architecture is concerned with the study of the
structure of software, including its topology, properties,
constituent components and their relationships and pat-
terns of combination [26]. Gary Chastek and Robert

Ferguson enlighten software architectural attributes and
quality related issues [1]. Huang and Myers, describe the
basic rules for program testing, which provide basic
principle for testing [3,10,14,15,16,17]. Poston [26],
Williams [27], and Hareton [19] shows, Integration all
the data across tools and repositories, Integration of con-
trol across the tools and Integration to provide a single
graphical interface into the test tool set. Limitation:
emphasize only integration tool (usability & portability).
Rosenberg [4] provides, the approach to software
metric for object oriented programming must be different
from the standard metric sets. Some metrics, such as,
line of code & cyclomatic complexity, have become ac-
cepted as standard for traditional functional / procedural
programs, but for an object oriented scenario, there are
many proposed object oriented metrics in the literature.
Limitation of this work: this provides the only conceptu-
al framework for measurement .Agrawal et al. Colleague
[25] cited in this paper the importance of software meas-
urement is increasing leading to the development of new
measurement techniques. Limitation: a) It does not pro-
vide any relationship between requirement & testing at-
tribute. b) It cannot evaluate for large data sets. An-
derson et al.[5] emphasized the software industry has

 Software Architectural Tool Validation for Object-Oriented Testing using with the facilitate Quality Attributes- a Case
Study of Snaker Game Project

2

performed a significant amount of research on improving
software quality using software tools & metrics will im-
prove the software quality and reduce the overall devel-
opment time. Good quality code will also be easier to
write, understand, maintain and upgrade. Limitation a)
it’s not providing any relationship between the require-
ment testing attribute. b) It does not provide a full fea-
tured testing tool (only Complexity & cohesion meas-
ure). c) Here provide the only conceptual framework for
measurement. Briand et al., and some other researchers
[9,11,28,29,30,31] demonstrate aims are that empiri-
cally the relationships between most of the existing cou-
pling & Cohesion measures for object oriented (OO)
system & fault proneness of object oriented system clas-
ses can be studied. Limitation: a) Only emphasis on co-
hesion & coupling metric. Bitman [6] exhibit key prob-
lem in software development of changing software- de-
velopment complexity and the method to reduce com-
plexity. Limitation: a) It does provide only complexity
measurement techniques. Krauskopf et al. [32], and Har-
rison [8] demonstrate, Coupling is the degree of interde-
pendence between two modules. In a good design, they
are kept low. Coupling should be lower in large and
complex system. No coupling is highly is desirable but
practically it is not possible. The good & bad points of
different types of coupling are discussed. The limitation
of their work is: a) Only emphasis on cohesion & cou-
pling metrics. Chidambaram [8] and Harrison [7] em-
phasized the coupling between object (CBO) metric and
evaluated for five object oriented systems & compared
with alternative design metric called NAS which meas-
ure the number of associations between class & its peers
(Harrison R.S). NAS metric is directly collectible from
design documents such as the object model. Limitation:
a) It does not provide any relationship between require-
ment & testing attribute. b) It does not provide some
basic idea for size & effort estimation. c) Measuring
complexity of a class is subject to bias. Reiner R. et al.,
Show How to manage component based software and
identify related metrics. [18]
Comprehensive means that it includes all or nearly all
features (maintainability, reusability, flexibility and
portability) and relationships required for migrating from
one testing class to another. It is designed to overcome
the limitation of existing software tools by providing a
final class level architecture having relationships be-
tween various testing classes. Software quality is another
focus of our architecture. We wish to achieve good
maintainability, reusability, flexibility and portability in
the architecture of the software testing tool by validating
the architecture using testing algorithms and performing
metrics calculation on each relationship existing between
the different testing techniques [1, 2, 3].

2. Research Methodology/Experiment
 First establish a requirement specification for qual-
itative testing tool using formal review specification.
Requirement gathering for snaker game project from
different literature (research papers, books and technical
reports) for the design of comprehensive architecture for
a software testing tool. [22,23,24] Create a software ar-
chitecture testing tool architecture bases on requirement
for testing through different literature [33] and identify
attributes (data member and member function).Here we
take a case study for project snaker game and design
relationship class architecture.
 Identify an attribute of the class’s architecture and
find relationships between different testing classes in the
architecture.
 Based attributes and the relationship between func-
tion and component we identified different metrics which
is supporting our comprehensive architecture. Descrip-
tive Statistics Examine distribution and variance for each
measure.
 Validation of our architecture and determines the
quality of software products using empirical and com-
parative analysis of the different case studies. Principal
Component Analysis PCA is the standard technique to
identify the underlying dimension (class property) that
explains the relations between the variation in the data
set.
 Finally on the basis of the above study we deter-
mine following goals: final architecture of software for
testing, determine the quality of software products and
study both (Procedural and Component Based) design

An architecture tool (snaker game) is complete if and
only if it entirely describes and specifies the system that
exactly fulfills all requirements and the model contains
all necessary information that is needed to implement
that desired model. Increasing the completeness of a re-
quirements specification can decrease its consistency and
hence affect the correctness of the final product. Con-
versely, improving the consistency of the requirements
can reduce the completeness, thereby again diminishing
correctness [20].Davis states that completeness is the
most difficult of the specification attributes to define and

incompleteness of specification is the most difficult vio-
lation to detect [31].According to Boehm [22], to be
considered complete, the requirements document must

Software Architectural Tool Validation for Object-Oriented Testing using with the facilitate Quality Attributes- a Case Study
of Snaker Game Project

3

exhibit three fundamental characteristics: (1) No infor-
mation is left unstated or “to be determined”, (2) The
information does not contain any undefined objects or
entities, (3) No information is missing from this docu-
ment. The first two properties imply a closure of the ex-
isting information and are typically referred to as internal
completeness. The third property, however, concerns the
external completeness of the document [23]. Architec-
tural Completeness is defined as an architecture includ-
ing all or nearly all features and relationships required
for migrating from one testing class to another.

3. Software Metrics use in Realization for
Snaker Game Projects

In this section we try to identify metrics related to archi-
tecture. The player controls a long, thin creature, resem-
bling a snaker, which roams around on a bordered plane,
picking up food (or some other item). Each time the
snake eats a piece of food, its tail grows longer, making
the game increasingly difficult. The user controls the
direction of the snake's head (up, down, left, or right),
and the snake's body follows. The player cannot stop the
snake from moving while the game is in progress, and
cannot make the snake go in reverse. In snaker game is
based on object oriented technology, In this project we
have 10 class diagram (figure.1) and each class diagram
related with other class diagram with some specific rela-
tionship type ,class grafix and snaker interrelated with
inheritance property of object oriented system ,similar
keyboard, font, balldraw, wormal, levels, plyr, menus,
option and master class snaker all interrelated with inher-
itance property of object oriented system and after analy-
sis of class architecture we find out different architecture
related metrics

According above relationship among different testing
technique/strategies, we realize the architecture of test-
ing tool using some software metrics and finally deter-
mine software quality of software. Chidamber, Agrawal
and et al. [4,5,10,12,13,14] proposed twenty two met-
rics but, here used those metrics which are useful for
my research work:

1.Size Metrics:

a) Number of Attributes (NOA)
b) Number of Methods(NOM)
c) Response for a Class(RFC)
d) Number of Children(NOC)
2.Reuse Metrics:

a) Reuse Ratio(U)

b) Specialization Ratio(S)
3. Inheritance Metrics:
a) Method Inheritance Factor (MIF)
b) Attribute Inheritance Factor (AIF)
c) Depth of Inheritance (DIT)
4. Polymorphism Metrics:
a). Number of methods overridden by a subclass

(NMO)

 b) Polymorphism Factor (PF)

5.Coupling and Cohesion Metrics
a) Coupling Between Object (CBO)

In above metrics some of their values are very low then
there impact in data analysis is negligible and others
used for providing help to decide the quality of software
products (details in table.2).Quality attribute standard of
architectural diagram find through metrics analysis in
below graphs.

4. Result Analysis and Discussion
Realizing this model through attribute relationship and
determine quality of model using measurement of met-
rics, and graphical representation and realizing this
model
DIT:- Inheritance (generalization), is a key concept in
the object model.While reuse potential goes up with the
number of ancestors, so does design complexity, due to
more methods and classes being involved. Studies have
found that higher DIT counts correspond to greater er-
ror density and lower quality. A class situated too
deeply in the inheritance tree will be relatively complex
to develop, test and maintain. It is useful, therefore, to
know and regulate this depth. A compromise between
the high performance power provided by inheritance
and the complexity which increases with the depth must
be found. A value of between 0 and 4 respects this
compromise. RFC:-Larger RFC counts correlate with
increased testing requirements. NOA: - A class with too
many attributes may indicate the presence of coinci-
dental cohesion and require further decomposition, in
order to better manage the complexity of the mod-
el. If there are no attributes, then serious attention
must be paid to the semantics of the class, if indeed
there are any. A high number of attributes (> 10)
probably indicate poor design, notably insufficient de-

 Software Architectural Tool Validation for Object-Oriented Testing using with the facilitate Quality Attributes- a Case
Study of Snaker Game Project

4

composition. A value of between 2 and 5 respects this
compromise. NOC: -If Values of NOC are larger than
reuse of classes also increases, and by this reason in-
creased testing. A class from which several classes in-
herit is a sensitive class, to which the user must pay
great attention. It should, therefore, be limited, nota-
bly for reasons of simplicity. A value of between 1 and
4 respects this compromise. NOM: - this would indicate
that a class has operations, but not too many. A value
greater than 7 may indicate the need for further ob-
ject-oriented decomposition, or that the class does not
have a coherent purpose. This information is useful
when identifying a lack of primitiveness in class opera-
tions (inhibiting re-use), and in classes which are little
more than data types. A value of between 3 and 7 re-
spects this compromise. This metric proved to be the
best indicator of the maintenance effort by indicating
the class that is more error prone. CBO: - Excessive
coupling limits the availability of a class for reuse, and
also results in greater testing and maintenance efforts.
Use links between classes define the detailed architec-
ture of the application, just as use links between pack-
ages define the high level architecture. These use
links play a determining role in design quality, notably
in the development and maintenance facilities. Value of
0 indicates that a class has no relationship to any other
class in the system, and therefore should not be part of
the system. A value between 1 and 4 is good, since it
indicates that the class is loosely coupled. A number
higher than this may indicate that the class if too tightly
coupled with other classes in the model, which would
complicate testing and modification, and limit the pos-
sibilities of re-use.

 Result Analysis: In this section the results of PC analy-
sis are presented in figure. 11, figure. 12 and tables. 3.
The PC analysis extraction method and varimax rotation
method are applied to different class level metrics. PCA
is one of the benchmark for dimension reduction tech-
nique here first principal components extract a maximum
of the variables and second they are uncorrelated .The
First one ensures that the minimum of total information
will be missed when looking at the first few principal
components. The second one ensures that the extracted
information will be organized in an optimal way. Num-
bers of dimensions captured are quite less than the total
number of metrics, implying that many metrics are high-

ly related .Here we used normalizes our variable into
three dimensions. In appendix section, we discuss de-
tails result data analysis using different table and figure
show principal component and eigenvalues in the appen-
dix along with variance (standard deviation).

5. Conclusion
In this research work, we identify implements a set of
metrics for measurement of architectural testing model,
used to evaluate the quality of the architectural models.
Certain model characteristics are measured against qual-
ity criteria determined by users thereby allowing you to
check that your models meet these quality criteria and
appraise the overall quality of a project and find out de-
velopment of different sub-systems is standard or not
.This research work used for developing industrial tools
for larger data set, and finally most of the values of our
architectural model are following standard values .Hence
our architecture is useful for any testing process.

.

REFERENCES

[1] Gary Chastek and Robert Ferguson, "Toward Measures
for Software Architectures (Software Engineering
Measurement and Analysis)," Software Engineering
Institute, Carnegie Mellon University,
CMU/SEI-2006-TN-013, March 2006.

[2] Howden W. E., "Functional Testing and Design
Abstractions," System and Software (Elsevier), vol. 1, pp.
307-313, 1980.

[3] J. Huang C., "An Approach to Program Testing," ACM
Computing Surveys, pp. 113-128, September 1975.

[4] Rosenberg Linda H., "Applying & interpreting object
oriented Metrics," Software Assurance Technology
Center (SATC) and NASA Goddard Space Flight Center ,
Utah, Software Technology Conference April 1998.

[5] Anderson John L. Jr., "How to Produce Better Quality
Test Software," IEEE Instrumentation & Measurement
Magazine , vol. 8, no. 3 ISSN : 1094-6969, August 2005.

[6] Bitman William R, Balancing software composition &
inheritance to improve reusability cost, and error rate.:
Johns Hopkins APL Technical Digest Vol. 18(4) ,
485–500., November 1997.

[7] Harrison R., Counsell S., and Nithi R., "Coupling metrics
for object oriented design," in Software metrics,
symposium, MD, USA, November 1998, pp. 150-157

Software Architectural Tool Validation for Object-Oriented Testing using with the facilitate Quality Attributes- a Case Study
of Snaker Game Project

5

[8] Chidamber S. and Kemerer C., "A metrics suite for object
oriented design," IEEE Trans. Software Eng., vol. 20, pp.
476-493, 1994.

[9] Agarwal k. K., Sinha Y., Kaur A., and Malhotra R.,
"Exploring Relationships among coupling metrics in
object oriented systems," CSI, vol. 37 (1), March 2007.

[10] Glenford J. Myers, The Art of Software Testing, 2nd ed.:
John Wiley & Sons, 2004

[11] Dr. Linda Rosenberg, Ted Hammer, and Jack Shaw,
"Software Metrics and Reliability," Software
AssuranceTechnology Center (SATC), NASA, 1998.

[12] Bass L., Clements P., and Kazman R., Software
Architecture in Practice, 2nd ed. Boston: MA:
Addison-Wesley, 2003.

[13] Nick Jenkins, "A Software Testing Primer," 2008.
[14] Soni D., Nord R., and Hofmeister C., "Software

Architecture in Industrial Applications," in Proceedings
of the 17th International Conference on Software
Engineering. Seattle NY: ACM Press, Washington, New
York, April 23-30, 1995.

[15] Hetzel William C., The Complete Guide to Software
Testing, 2nd ed.: Wellesley, Mass.: ED Information
Sciences ISBN:0894352423. Physical description: ix, 280
p.: ill; 24cm, 1988.

[16] Jiantao Pan, Software Testing 18-849b Dependable
Embedded Systems Spring., 1999.

[17] Edward Miller, "Introduction to software testing
technology. In Tutorial: Software Testing & Validation
Techniques," IEEE Computer Society Press, pp. 4-16,
1981.

[18] Reiner R. Dumke and Achim S. Winkler, "Managing the
component- Based Software Engineering with Metrics,"
0-8186-7940-9/97 IEEE, 1997.

[19] Hareton K.N. Leung, "Test Tools for the Year 2000
Challenges,".

[20] Williams C. T, "The STCL test tools architecture," vol.
41, no. 1

[21] Perry D. E. and Wolf A. L., "Foundations for the study of
software architecture," SIGSOFT Soft. Engg., 17 (4),
1992

[22] Boehm BW, "Verifying and validating software
requirements and design specifications," IEEE Software,
vol. 1, no. 1, pp. 75-88, 1984.

[23] Cordes DW and Carver DL., "Evaluation methods for
user requirements documents," Information and system
Technology, vol. 31, no. 4, pp. 181-188, 1989

[24] Davis AM, Software Requirements: Analysis and
Specification, 2nd ed.: Prentice Hall, 1993.

[25] K. K. Agarwal, Yogesh Sinha, Arvinder Kaur, Ruchika
Malhotra “ Exploring Relationships among coupling
metrics in object oriented systems. Journal of CSI vol. 37,
no.1, January March 2007

[26] Robert M. Poston, “Testing tool combine best of new and
old,” IEEE Software. March 2005.

[27] Williams et. Al., “The STCL Test Tool Architecture,”
IBM Systems Journal, Vol 41, No.1, 2002.

[28] Lionel C. Briand, John W. Daly, and Jurgen Wust, “A
unified framework for coupling measurement in ob-
ject-oriented system”, IEEE transaction on software
engineering, 1996.

[29] Lionel C. Briand, John Daly “ A Comprehensive Empiri-
cal Validation of Design Measures for Object-Oriented
Systems”, Fraunhfer IESE, 1999.

[30] Lionel C. Briand, “Investigating Quality control in object
oriented design: an industrial case study” ACM-1999

[31] Birand, W. Daly and J. Wust “Exploring the relationship
between design measures and software quality.Journal
of systems and software, 5(2000) 245-273.

[32] Juan Carlos Esteva, “Learning to Recognize” (Krauskopf,
1990) Jan Krauskopf, “The cohesive highs and the cou-
pling lows of good software design”, IEEE, 1990.

[33] Sun Chong-ai ,Leu Chao, "Architecture Framework for
object-oriented Design," IEEE Transaction on Software
Engineering, 2004.

[34] Lalji Prasad and Sarita singh Bhadauria, A full featured
component based architecture testing tool, Interna-
tional Journals of Computer Science Issues, Vol. 8, Issue
4, 2011.

Software Architectural Tool Validation for Object-Oriented Testing using with the facilitate Quality Attributes- a Case Study of Snaker
Game Project

6

Appendix:

1. Snooker game Class Diagram Architecture:

Fig: 1: Class Diagram for Snaker Game Project

Software Architectural Tool Validation for Object-Oriented Testing using with the facilitate Quality Attributes- a Case Study
of Snaker Game Project

2. Metrics Calculation: This table evaluates the values of the different metrics for each class present in the snaker
game.

I. Inheritance Metrics:

a) MIF- Method Inheritance Factor

 MIF = ∑TC
i=1 Mi(Ci)

 ∑TC

i=1Ma(Ci)

 Where Ma(Ci)=Mi(Ci)+Md(Ci)
 And TC=10
 MIF=3/53

b) AIF-Attribute Inheritance Factor

 AIF= ∑TC
i=1 Ad(C)

 ∑TC

i=1Aa(Ci)

 AIF=52/67

II. Reuse Metrics:

b) Reuse Ratio (U)

 U= Number of super classes/Total number of classes
 U=9/10

c) Specialization Ratio(S)
 S= Number of subclasses/Number of super classes
 S=1/9

III.Polymorphism Metrics

a) NMO-Number of methods overridden by a subclass

 NMO Snaker=3

b) Polymorphism Factor(PF)

 PF = ∑TC

i=1 Mo(Cj)

 ∑TC

i=1[Mn(Ci) x DC(Ci)]

 Where, Mn(Ci)= number of new methods
 Mo(Ci) = number of overriding methods
 DC (Ci) =Descendant count
 PF=3/46

Software Architectural Tool Validation for Object-Oriented Testing using with the facilitate Quality Attributes- a Case Study of Snaker
Game Project

8

2. Range table: The range table evaluates the minimum and maximum ranges for the metrics calculated in below

table. On the basis of metrics value and metrics relation to the qualitative property of software we analyzed in

below graphs

Classes

Metrics

NOA

NOM

RFC

DIT

NOC

CBO

Snaker class 15 4 15 1 0 4

Grafix Class 2 16 16 0 1 0

Keyboard class 1 3 3 0 1 0

Font class 2 4 0 1

Balldraw Class 5 2 3 0 1 1

Wormai Class 8 2 2 0 1 0

Levels class 4 3 - 0 1 -

Plyr class 15 5 - 0 1 -

Menus Class 0 9 - 0 1 -

Options Class 0 2 12 0 - 2

Table .1: Metrics calculation table for Snaker game

Size metrics affecting Simplicity:

Number of attributes (NOA): The graph shows the relationship between NOA and simplicity factor which line-

arly increases until the number of attributes is less and later as NOA increases simplicity reduces.

Fig: 2: Graph between simplicity and NOA

Software Architectural Tool Validation for Object-Oriented Testing using with the facilitate Quality Attributes- a Case Study
of Snaker Game Project

Number of methods (NOM): The graph shows the relationship between NOM and simplicity factor. Increment in
NOM reduces the simplicity of the program.

Fig: 3: Graph between simplicity and NOM

Response for a class (RFC): The graph shows the relationship between RFC and simplicity factor. The Response

for a class does not affect simplicity after a certain limit and remain constant.

Fig: 4: Graph between simplicity and RFC

Software Architectural Tool Validation for Object-Oriented Testing using with the facilitate Quality Attributes- a Case Study of Snaker
Game Project

10

Size metrics affecting portability:

Number of attributes (NOA): The graph shows the relationship between NOA and portability factor which lin-

early increases by the number of attributes is less and later as NOA increases portability reduces.

Fig: 5: Graph between portability and NOA

Number of methods (NOM): The graph shows the relationship between NOM and portability factor which line-

arly increases by the number of attributes is less. Further increment in a number of methods decreases the portabil-

ity.

Fig: 6: Graph between portability and NOM

Software Architectural Tool Validation for Object-Oriented Testing using with the facilitate Quality Attributes- a Case Study
of Snaker Game Project

Size metrics affecting user requirements:

Number of attributes (NOA): The more the number of attributes the more requirements of user is satisfied. Hence

it depicts a linear relationship.

Fig: 7: Graph between user requirements and NOA

Number of methods (NOM): Initially the relationship between the user requirement and NOM is linear, but with

further increment is the number of methods the user requirement stabilizes.

Fig: 8: Graph between user requirements and NOM

Software Architectural Tool Validation for Object-Oriented Testing using with the facilitate Quality Attributes- a Case Study of Snaker
Game Project

12

Polymorphism metrics affecting high performance:

Number of methods overridden by a subclass (NMO): Overriding of methods increases the performance of the

program but further increment of overridden methods decreases the performance as complexity increases.

Fig: 9: Graph between high performance and NMO

Polymorphism metrics affecting reusability:

Number of methods overridden by a subclass (NMO): Overriding of methods by subclass reduces the

reusability to a greater extent when more methods are overridden.

Fig: 10: Graph between reusability and NMO

PCA ANALYSIS: - In this section the results of PC analysis are presented. The PC analysis extraction

method and varimax rotation method are applied to different class level metrics. PCA is one of the

Software Architectural Tool Validation for Object-Oriented Testing using with the facilitate Quality Attributes- a Case Study
of Snaker Game Project

benchmark for dimension reduction technique here first principal components extract a maximum of the

variables and second they are uncorrelated .The First one ensures that the minimum of total information

will be missed when looking at the first few principal components. The second one ensures that the ex-

tracted information will be organized in an optimal way. Numbers of dimensions captured are quite less

than the total number of metrics, implying that many metrics are highly related .Here we used normalizes

our variable into three dimensions. Table 2 shows the value of architectural tool, it shows mean and stand-

ard deviation which is help us for deciding our architecture validation.

Table: 2: PCA (Snaker Game)

Fig: 11: Component and variance (Snaker Game)

Metrics Min Max. Mean Mdn. S.dev. PCA_1_Axis_1 PCA_1_Axis_2 PCA_1_Axis_3
NOA 0 15 5.19999981 3 5.71000004 1.33559453 1.15662634 -0.16061185
NOM 2 16 5 8.5 4.38999987 2.8792522 -1.7822665 0.02702049
RFC 0 16 5.0999999 2.5 6.55000019 1.4571259 1.40078652 0.10860458
DIT 0 1 0.1 0 0.31 -2.17278409 -0.35446757 0.06206273
NOC 0 1 0.80000001 1 0.41999999 -1.8494159 -0.40814102 -0.26119137
CBO 0 4 0.69999999 0 1.33000004 -1.64977264 -0.01253791 0.22411549

Software Architectural Tool Validation for Object-Oriented Testing using with the facilitate Quality Attributes- a Case Study of Snaker
Game Project

14

 Fig: 12: Eigenvalue with component (Snaker Game)

In above table.2, In first PCA the NOM value higher than others metrics , then its uniquely determine the character-
istic, In second PCA axis RFC value is higher than others metric's value ,then its uniquely determines the char-
acteristics .In third PCA axis CBO is higher than others metrics ,then its uniquely determine the characteristic and
fig.11 shows relationship of component with variance and fig.12,Eigenvalue with component.

